For strong acids and severe corrosionset screw s

Commercially pure zirconium set screws, also known as zirconium 702, are most well-known for their superior corrosion resistance in some of the harshest environments that include:

•  Hydrochloric Acid •  Sulfuric Acid •  Formic Acid •  Nitric Acid  •  Acetic Acid  

It is also a metal that offers industry unique properties. It does not absorb neutrons, making it ideal for use in nuclear power and at low temperatures it is superconductive, making it ideal for super magnets.

Hydrochloric Acid Resistance
What makes Zirconium set screws particularly useful to industry is their resistance to hydrochloric acid where they exhibit a corrosion rate of less than 5mpy at all concentrations and temperatures in excess of the boiling point. Even in 37% HCI, Zirconium set screws do not begin to show substantial corrosion until 130°C (266°F). This performance is unmatched by any other engineering metal or alloy with the exception of tantalum. To give you a point of reference, Hastelloy C276 will experience 288 mpy (mils per year) of corrosion in just 10% HCl at the boiling point while Zirconium set screws will have a nil corrosion rate even when aerated. As a result, Zirconium set screws are most beneficial when used is in hydrochloric acid processes with temperatures above the boiling point and in the absence of oxidizing impurities.

General Acid Resistance
In addition to its impressive performance in hydrochloric acid, in sulfuric acid, Zirconium set screws are resistant to temperatures well above boiling and at acid concentrations up to 70%. Only one other metal, tantalum, is equal to zirconium in nitric acid, where zirconium can be used in all concentrations up to 90% and temperatures up to 200°C. Zirconium is also resistant to most organic media and is considered one of the most corrosion resistant materiala in virtually all acetic acid solutions.

Zirconium comparison chart

When Zirconium Does Not Perform
Zirconium is known for its tough resistance to acid corrosion, but there are instances that it is not recommended to use Zirconium. Though aeration does not affect the resistance of Zirconium set screws, even small amounts of oxidizing media such as ferric or cupric chlorides will greatly decrease its corrosion resistance. This often occurs from upstream equipment that carry corrosion contaminants into the zirconium equipment, making process control of upstream equipment critical in maintaining the corrosion resistance of Zirconium. In addition, acid in the presence of oxidizing halide contaminants and can accelerate the rate of attack on Zirconium set screws even at low concentrations. Use of Zirconium set screws in the presence of fluoride ions is also not recommended, even at low concentrations.

Applications
•  Nuclear industry utilize Zirconium set screws for its inability to absorb neutrons
•  Zirconium has been used for decades in over 20 years in dye manufacturing for its incredible corrosion resistance and inertness.
•  Chemical processing plants often utilized Zirconium in the production of polymers that utilize strong acids .
•  Commonly used with nitric acid for the production ammonium nitrate for fertilizers.

Resources: Zirconium Torque Specs

Screw TypesFlat Head ScrewsHex Head Cap ScrewPan Head ScrewsSet ScrewsSocket Head Cap Screws


Zirconium Set Screw Features & Benefits

Zirconium set screws are unique in that they have no screw head, meaning that they have no protruding part past the threaded shaft. They are thread only and are available with a socket or slotted driver insert at one end. Set screws are used to secure an object within or against another object. Typically they secure a rotating part such as a gear or shaft. Zirconium set screws are driven through a threaded hole in the rotating part until it is tight against the inner object, preventing from moving relative to the outer object. Set screws are available with various points depending on the application.

cup point

Cup Point 
This is the most commonly used set screw and is identified by a cup-shaped indentation on one end. Zirconium cup points are typically used for a quick, semi-permanent or permanent applications where it is acceptable to cut the cup point edge of the screw.

 

Cone Pointcone point
A cone point is easily identifiable by its sharp cone-shaped point – just like an ice cream cone. Zirconium cone point set screws deliver the strongest clamping force due to the deep penetration of the point. As a result they are used for permanent assembly.

 

flat point setFlat Point

The cheapest and simplest of the set screw point styles, this screw has a flat surface on the bottom of the screw. This type is used when you need the ability to frequently change parts and require minimal shaft deformation.

 


Zirconium Grades, Chemistry and Specifications

Zirconium 702

99.2% commercially pure zirconium with the highest corrosion resistance.

Zirconium 702 Specifcations: UNS R60702, ASTM B493 and B550, ASME SB493 and SB550 Rod (Bar), ASTM SB551, ASME SB551  Plate, Sheet and Strip 

Zirconium 702 Chemistry

Zirconium 705 

95.5% zirconium with the addition of 2-3% niobium. This addition increases the impact strength of the alloy.

Zirconium 705 Specifications: UNS R06705, ASTM B493 and B550, ASME SB493 and SB550 Rod (Bar)

Zirconium 705 Chemistry

 


Mechanical Properties

 Zirconium 702 Tensile Curve Zirconium 705 Tensile Curve   

 

Zirconium Tensile Data


Zirconium Iso-Corrosion Curves

Specialty Metal H2SO4 Iso-Corrosion Curve

Specialty Metal HCl Iso-Corrosion Curve  

Sie sind sich nicht sicher, welches Material für Ihre Anwendung am besten geeignet ist?

Kontaktieren Sie einen Experten

Nutzen Sie unseren Materialselektor

 

Fordern Sie ein Angebot/eine Bestellung an

Anruf: 888-393-4517 oder Einen Antrag stellen
Fragen?

Unsere Materialexperten stehen bereit, Sie bei Ihrer spezifischen Anwendung zu unterstützen.

Kontaktieren Sie einen Experten